a2 United States Patent

Naito

US009419791B2

(10) Patent No.: US 9,419,791 B2

(54) HASH VALUE CALCULATION DEVICE,
HASH VALUE CALCULATION METHOD,
AND NON-TRANSITORY
COMPUTER-READABLE STORAGE
MEDIUM INCLUDING COMPUTER
EXECUTABLE INSTRUCTION

(71) Applicant: Mitsubishi Electric Corporation,
Tokyo (JP)

(72) Inventor: Yusuke Naito, Tokyo (IP)

(73) Assignee: Mitsubishi Electric Corporation,
Tokyo (JP)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 14/420,022

(22) PCTFiled: Sep. 13,2013

(86) PCT No.: PCT/JP2013/074801
§371 (o)D),
(2) Date: Feb. 6,2015

(87) PCT Pub. No.: W02014/046024
PCT Pub. Date: Mar. 27, 2014

(65) Prior Publication Data
US 2015/0215113 Al Jul. 30, 2015

(51) Int.CL
HO4L 9/00 (2006.01)
HO4L 9/06 (2006.01)
G09C 1/00 (2006.01)
(52) US.CL
CPC oo HO4L 9/0643 (2013.01); GOIC 1/00

(2013.01); HO4L 9/0618 (2013.01); HO4L
2209/24 (2013.01); HO4L 2209/30 (2013.01)

10

(45) Date of Patent: Aug. 16, 2016
(58) Field of Classification Search

CPC ..ot HO4L 9/06; HO4L 9/00

USPC ittt s 380/28

See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
8,787,563 B2 7/2014 Shirai et al.

2010/0046742 Al* 2/2010 Muratani HO4L 9/3013
380/28

(Continued)

FOREIGN PATENT DOCUMENTS

JP 2010-049127 3/2010
JP 2012-68436 4/2012
OTHER PUBLICATIONS

International Search Report Issued Nov. 19, 2013 in PCT/JP13/
074801 filed Sep. 13, 2013.

(Continued)

Primary Examiner — Anthony Brown
(74) Attorney, Agent, or Firm — Oblon, McClelland,
Maier & Neustadt, L.L.P

(57) ABSTRACT

The object is to constitute a hash function by removing a
feed-forward arithmetic operation. A hash value calculation
device, for each integeriofi=l, ..., L in an ascending order,
calculates a function fi] which, upon input of a value M[i]
having k-n bits, an n-bit value y1[i-1] (a value y1[0] is a
predetermined value IV1), and an n-bit value y2[i-1] (a value
y2[0] is a predetermined value IV2), outputs an n-bit value
x1[i], an n-bit value x2[], ak-bit value k1[], and a k-bit value
k2[i]; for the value x1[7] as a plaintext and the value k1[/] as
a key, calculates an n-bit value y1[i] with an encryption func-
tion of ablock cipher; and for the value x2[i/ as a plaintext and
the value k2[7] as a key, calculates an n-bit value y2[i] with the
encryption function for the block cipher. The hash value
calculation device, upon input of a value y1[L.] and a value
y2[L] which are calculated, calculates a hash value with an
injective function g.

8 Claims, 12 Drawing Sheets

HASH VALUE CALCULATION DEVICE

PADDING PART

PARTITIONING PART

DEFAULT-LENGTH VALUE
INPUT PART
15
COMPRESSION FUNCTTON CALCULATION PART
151
FUNCTION f

CALCULATION PART

152
ENCRYPTION FUNCTION
CALCULATION PART

16
HASH VALUE
CALCULATION PART

US 9,419,791 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2010/0142701 Al1* 6/2010 Volkoff GO6F 17/30156
380/28
2010/0146296 Al* 6/2010 Kimcccooevens HO4L 9/3239
713/189

OTHER PUBLICATIONS

Hirose, S., “Secure Double Block Length Hash Functions Based on
Abreast/Tandem Davies-Meyer”, IPSJ SIG Notes, vol. 2004, No. 75,
pp. 21-26, 2004 (with English abstract).

Naito, Y., “Blockcipher-Based Double-Length Hash Functions for
Pseudorandom Oracles”, Cryptology ePrint Archive: Report 2010/
566, Version: 20110511:021845, Retrieved from the Internet, URL:
<http://eprint.iacr.org/2010/566.pdf>, [retrieved on Oct. 25, 2013],
(19 Pages), 2011.

Dodis, Y., et al. “Salvaging Merkle-Damgard for Practical Applica-
tions”, LNCS, Advances in Cryptology-EUROCRYPT, vol. 5479,
pp. 371-388, 2009.

Lee, J. et al., “The Collision security of Tandem-DM in the ideal
Cipher Model”, CRYPTO, Lecture Notes in Computer Science 6841,
(26 pages), 2011.

Fleischmann, E. et al., “Security of Cyclic Double Block Length
Hash Functions Including Abreast-DM”, IMA Int. Conf., Lecture
Notes in Computer Science 5921, (25 pages), 2009.

Hirose, S.,“Some Plausible Constructions of Double-Block-Length
Hash Functions”, FSE, Lecture Notes in Computer Science 4047, (16
pages), 2006.

Lai, X. et al, “Hash Functions Based on Block Ciphers”,
EUROCRYPT’92, Lecture Notes in Computer Science 658, pp.
55-70, 1993.

Onur Ozen and Martijin Stam, “Another Glance at Double-Length
Hashing,” Cryptography and Coding, 2009, pp. 176-201, 26 Pages.
Extended European Search Report mailed May 31, 2016 in European
Patent Application No. 13839043.0.

* cited by examiner

U.S. Patent Aug. 16, 2016 Sheet 1 of 12 US 9,419,791 B2

Fig. 1
M
(k-n)
X1
wl o {n) yl
(n) el (n)
kl
N k
N (k)
k2
! (k)

y2

US 9,419,791 B2

Sheet 2 of 12

Aug. 16, 2016

U.S. Patent

w _ >m “ a— X ll X
(134 e (112X 1-12 RN) 212 1 e K 112 .
v et) G ’ o u

Qe8| My e S @) |+ m 1 fe

= (I L[N URE

T e B prrre) T L IAI
Mk . [T 1% (- 14 ; : (2] 1x (1714 H (11

: [IN P @l m (1IN

| mo: @oi uEy

T3

U.S. Patent Aug. 16, 2016 Sheet 3 of 12 US 9,419,791 B2

Fig. 3

US 9,419,791 B2

Sheet 4 of 12

Aug. 16, 2016

U.S. Patent

14Yd NOILVINYIVY

anTvA HSVH
\ A
97
|
19¥d NOILVIN)TY
~ NOLLONQA NOILJXION 14¥d ONINOILTLAVd
7281 p; y
19vd NOILVINOTVY) 61
~ I NOILONNd
151 1vd ONIaavd
LYvd NOILVINDTY) NOTLONNA NOISSTIN0D p ¥
A \ N.ﬁ
il L3vd 1ndnI
13vd INdNT INTVA BIONTT-XIVILI AV
ANTYA HINAT-LTNVAIA
\\
7 f 11

2!

HOIAZQ NOILVINDTIVY dNIVA HSVH

31

01—

US 9,419,791 B2

Sheet 5 of 12

Aug. 16, 2016

U.S. Patent

([@]

*
U dATVA HSYH 104100 ANV
‘3 NOTLONQA FIVIN)TYD

128 OV [T T4 40 LNdNI NOd()

S

95— 1
(o)
1
(1121 (1189 [1]29=:[1]24
([YITX (11 1%) [1]Te=-[1]IA
6" 1
(O-128 (-1 148 (W [1]]
= Mgy ex tax
— 4
£ss T
t
(1121 (112% [1129=: 1124
([T]TAC[IIX) [1]19="[1] IA
AN 1
(ZAT TAT[TIW (11}
=21 I (1) gx “[1) 1X
185" t

G31

S

€S

S

IS

[T - “[1IN JAIEOTY

— A

(TN~ “[1TH 10dIN0
ANV ‘P NOILINAA NOILII¥Vd
qLVINYIV) +N 40 INdNI NOdA

— |3

HIONIT L19 TX (U-¥) ONIAVH
s\ JLVIEANDD 0L ped NOILONNA

JIVINOTYD W A0 LDANI NOdD

o~ y

N FATI09Y

o~ A

[s |

U.S. Patent Aug. 16, 2016 Sheet 6 of 12 US 9,419,791 B2

Fig. 6
M
(k-n)
x1
wl Y - vl
R I O I LN gyt
B = "\
i | SN S S ! (k)
N 1-_1d k2
e s W
w2 ! ! y2
I L v 2 T Iy

US 9,419,791 B2

Sheet 7 of 12

Aug. 16, 2016

U.S. Patent

1
[}
]
[}
[}
[}
[}
1
1
[}
]
[}
[}
1
1
1
1
1
1
1
1
1
1
1
1
1
]
t
1
3
]
]
]
]
3
)

| p—] 7 | __NL]EQ_ _
: —] (8173 .MN; :ua “: H (1% k::x:ua _ 2Al
H H | L .} NHNv—_ y i 1L . | % i
m T s s T i R - _
A [i m_, i
! RN S IS & G
“ m i St IR N ! ! “ﬁ- IR ON " "
" P 1Bkt L (0} |
: : ; d - ; Ho[1e L e L 1 Al
M : m 1 rARS S ~ 1114 (1] 1x
[N P @l [N
w moi AER NE

U.S. Patent Aug. 16, 2016 Sheet 8 of 12 US 9,419,791 B2

US 9,419,791 B2

Sheet 9 of 12

Aug. 16, 2016

U.S. Patent

U.S. Patent Aug. 16, 2016 Sheet 10 of 12 US 9,419,791 B2

U.S. Patent Aug. 16, 2016 Sheet 11 of 12 US 9,419,791 B2

Fig. 11
M

(k-n)

i,._ _._._._._._._._._._._._._._._:
wi | i
m) i i

i N 9

f : [(k)

|

i :I\/\ (k)
w2 _J , V2
(n) Lo S (n)

US 9,419,791 B2

Sheet 12 of 12

Aug. 16, 2016

U.S. Patent

US 9,419,791 B2

1

HASH VALUE CALCULATION DEVICE,
HASH VALUE CALCULATION METHOD,
AND NON-TRANSITORY
COMPUTER-READABLE STORAGE
MEDIUM INCLUDING COMPUTER
EXECUTABLE INSTRUCTION

TECHNICAL FIELD

The present invention to a technique that calculates a hash
value securely even when a compression function is such that
its inverse element can be calculated.

BACKGROUND ART

A hash function is a function which, upon input of an
arbitrary-length value, outputs a fixed-length hash value.

Non-patent literatures 3 and 4 describe a hash function that
utilizes, as a block cipher encryption function, a compression
function constituted using, for example, AES-256. In order
that the hash function described in non-patent literatures 3
and 4 satisfies a collision resistance, employed AES-256 must
be anidealized block cipher (see non-patent literatures 1 to 3).

This hash function is a hash function which, where a block
cipher has an n-bit plaintext length, forms a hash value having
a 2n-bit length.

An idealized block cipher is a block cipher selected ran-
domly from a set of all block ciphers having an n-bit plaintext
length (block length) and a k-bit key length.

When a hash function H having a w-bit output length
satisfies a collision resistance, it signifies that it is difficult to
find two different input values M and M' for which H(M)=H
(M") holds. Strictly, a hash function is considered to satisfy a
collision resistance if such input values cannot be found
through hash value calculation of 2™ times or less.

CITATION LIST
Non-Patent Literature

Non-Patent Literature 1: Jooyoung Lee, Martijn Stam, and
John P. Steinberger. The Collision Security of Tandem-DM
in the Ideal Cipher Model. CRYPTO 2011. pp 561-577.
Lecture Notes in Computer Science 6841.

Non-Patent Literature 2: Ewan Fleischmann, Michael Gor-
ski, and Stefan Lucks. Security of Cyclic Double Block
Length Hash Functions. IMA Int. Conf. 2009. pp 153-175.
Lecture Notes in Computer Science 5921.

Non-Patent Literature 3: Shoichi Hirose. Some Plausible
Constructions of Double-Block-Length Hash Functions.
FSE 2006. pp 210-225. Lecture Notes in Computer Sci-
ence 4047.

Non-Patent Literature 4: X. Lai and J. L. Massey. Hash Func-
tions Based on Block Ciphers. EUROCRYPT’92. pp
55-70. Lecture Notes in Computer Science 658.

SUMMARY OF INVENTION
Technical Problem

In the hash function described in Non-patent literatures 3
and 4, an exclusive disjunction of a plaintext component,
being an input to an encryption function that constitutes a
compression function, and a ciphertext component, being an
output from the encryption function, is treated as an output
from the compression function, in order that an input to the
compression function is difficult to obtain from the output

10

15

20

25

30

35

40

45

50

55

60

65

2

from the compression function. In the following explanation,
an arithmetic operation that uses an exclusive disjunction of a
plaintext component and a ciphertext component, as an out-
put from a compression function will be called feed-forward
arithmetic operation.

In cases where the feed-forward arithmetic operation is
employed, inputs to the encryption function must be recorded
until calculation of an output from the encryption function is
completed, and a memory for this purpose is accordingly
required. When, however, the feed-forward arithmetic opera-
tion is removed in order to reduce the memory usage, it
becomes possible to calculate an input to the compression
function from an output from the compression function,
which is undesirable. Using the properties that the input can
be calculated from the output, breaching of the collision
resistance of the compression function becomes possible. Ifa
hash function is constituted using a compression function
whose collision resistance has been breached, the hash func-
tion will no longer be able to satisty the collision resistance.

It is an object of the present invention to constitute a hash
function by, for example, removing the feed-forward arith-
metic operation while satisfying the collision resistance.

Solution to Problem

A hash value calculation device according to this invention
is a hash value calculation device that calculates a hash value
using an encryption function for a block cipher having an
n-bit plaintext length and a k-bit (k>n) key length, the hash
value calculation device comprising:

a default-length value input part that receives L. (L is an
integer of 2 or more) of values M[1], . . ., M[L] each having

k-n bits;
a compression function calculation part that, for each inte-
geriofi=1,..., Linan ascending order: calculates a function

f[i] which, upon input of a value M[i] received by the default-
length value input part, an n-bit value y1[i-1] (a value y1[0]
is a predetermined value IV1), and an n-bit value y2[i-1] (a
value y2[0] is a predetermined value IV2), outputs an n-bit
value x1[7], an n-bit value x2[/], ak-bit value k1[/], and a k-bit
value k2[7]; for the value x1[/] as a plaintext and the value
k1[i] as a key, calculates an n-bit value y1[i] with the encryp-
tion function; and for the value x2[7] as a plaintext and the
value k2[/] as a key, calculates an n-bit value y2[i] with the
encryption function; and

a hash value calculation part that, upon input of a value
y1[L] and a value y2[L] which are calculated by the compres-
sion function calculation part, calculates a hash value with an
injective function g.

Advantageous Effects of Invention

The hash value calculation device according to the present
invention does not use the feed-forward arithmetic operation.
Hence, in the hash value calculation device according to the
present invention, the memory usage can be reduced. Also, in
the hash value calculation device according to the present
invention, the collision resistance is satisfied if the block
cipher encryption function is an idealized block cipher.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a structural diagram of a compression function ¢
utilized in a hash function according to Embodiment 1.

FIG. 2 is a structural diagram of the arithmetic operation
part of the hash function according to Embodiment 1.

US 9,419,791 B2

3

FIG. 3 is a structural diagram of the input part of the hash
function according to Embodiment 1.

FIG. 4 is a configuration diagram of a hash value calcula-
tion device 10 according to Embodiment 1.

FIG. 5 is a flowchart showing the operation of the hash
value calculation device 10 according to Embodiment 1.

FIG. 6 is a structural diagram of a compression function ¢
utilized in a hash function according to Embodiment 2.

FIG. 7 is a structural diagram of the arithmetic operation
part of the hash function according to Embodiment 2.

FIG. 8 is a structural diagram of a compression function ¢
utilized in a hash function according to Embodiment 3.

FIG. 9 is a structural diagram of the arithmetic operation
part of the hash function according to Embodiment 3.

FIG. 10 is a structural diagram of a compression function ¢
utilized in a hash function according to Embodiment 4.

FIG. 11 is a structural diagram of a compression function ¢
according to Embodiment 4 for cases where an encryption
function el and an encryption function 3 are the same.

FIG. 12 is a structural diagram of the arithmetic operation
part of the hash function according to Embodiment 4.

DESCRIPTION OF EMBODIMENTS
Embodiment 1

FIG. 1 is a structural diagram of a compression function ¢
utilized in a hash function according to Embodiment 1.

The compression function ¢ is constituted using a function
f, and two encryption functions el and e2 for a block cipher
having an n-bit plaintext length and a k-bit key length.

The function f, upon input of three values M, w1, and w2,
outputs four values x1, x2, k1, and k2. The value M has k-n
bits. The values w1 and w2 each have n bits. The values x1 and
x2 each have n bits. The values k1 and k2 each have k bits.

The function f'satisfies the following three conditions (1) to
(3): (1) The function fis injective. (2) Where the value M is a
fixed value, an injective relation holds between the values w1,
w2 and the values x1, x2. (3) The values x1 and x2 are not
equal, or the values k1 and k2 are not equal.

The encryption function el, for the value x1 being an
output from the function f, as a plaintext, and the value k1
being an output from the function f, as a key, outputs an n-bit
value y1.

The encryption function €2, for the value x2 being an
output from the function f, as a plaintext, and the value k2
being an output from the function f, as a key, outputs an n-bit
value y2.

The encryption functions el and e2 can be the same
encryption functions.

FIG. 2 is a structural diagram of the arithmetic operation
part of the hash function according to Embodiment 1.

The arithmetic operation part of the hash function, upon
input of L (L is an integer of 2 or more) of input values
M[1], . . ., M|[L] each having k-n bits, calculates a hash
value h.

The arithmetic operation part of the hash function is con-
stituted using L of compression functions ¢[1], . .., ¢[L.] and
a function g which combines two input values.

A compression function c[i] for each integeriofi=l, ...,
L is the compression function ¢ shown in FIG. 1, and has a
function f]i] being the function f shown in FIG. 1, an encryp-
tion function el[/] being the encryption function el shown in
FIG. 1, and an encryption function e2[/] being the encryption
function e2 shown in FIG. 1.

10

15

20

25

30

35

40

45

50

55

60

65

4

The top compression function ¢[1], for a value M[1] as the
value M, a predetermined fixed value IV1 as the value w1, and
a predetermined fixed value IV2 as the value w2, outputs
values y1[1] and y2[1].

More specifically, first, upon input of three values includ-
ing the value M[1], the fixed value IV1, and the fixed value
1V2, the function f]1] outputs four values x1[1], x2[1], k1[1],
and k2[1]. Subsequently, for the value x1[1] as a plaintext and
the value k1[1] as a key, an encryption function el[1] outputs
the value y1[1]. Also, for the value x2[1] as a plaintext and the
value k2[1] as a key, an encryption function e2[1] outputs the
value y2[1].

The compression function c[i] foreachiofi=2, ..., L, for
a value M[i] as the value M, a value y1[i-1] as the value w1,
and a value y2[i-1] as the value w2, outputs values y1[i] and
v2[i].

More specifically, first, upon input of the three values M[i],
y1[i-1], and y2[i-1], the function]i] outputs four values
including values x1[7], x2[7], k1[i], and k2[/]. Subsequently,
for the value x1[/] as a plaintext and the value k1[/] as a key,
an encryption function el[7] outputs the value y1[i]. Also, for
the value x2[i] as a plaintext and the value k2[/] as a key, an
encryption function e2[i] outputs the value y2[i/.

The function g is an injective function, and upon input of an
n-bit value y1[L] and an n-bit value y2[L] which are outputted
by a compression function c[L], outputs a result as a 2n-bit
hash value h.

For example, the function g adds the bits of the value y2[L]
after the bits of the value y1[L]. Naturally, the function g may
add the bits of the value y1[L] after the bits of the value y2[L.],
or combine the bits of the value y1[L] and the bits of the value
y2[L] in an arbitrary order.

FIG. 3 is a structural diagram of the input part of the hash
function according to Embodiment 1.

In the input part of the hash function, L. of input values
M[1],...,MJ[L]to be inputted to the arithmetic operation part
are calculated.

The input part of the hash value is constituted using a
padding function pad and a partition function d.

The padding function pad, upon input of the value M,
outputs a value M* having a length that is L times as large as
(k-n).

The function pad, upon input of two arbitrary values a and
b, outputs 2 values a* and b*, each of which has a length that
is L times as large as (k-n) and one of which does not form a
suffix for the other. Not forming a suffix signifies that one
value out of the two values a* and b* is not equal to some
least-significant bits of the other value.

For example, the function pad adds 1 after the value M,
adds a necessary bit number of 0 after 1, and adds a value
<M> after the necessary bit number of O, thus forming a value
M*. The value <M> is a bit representation value, by j bits, of
the bit length of the value M. For example, assuming j=64, if
the value M has an 8-bit length, the value <M>is 0. .. 0100.

The partition function d partitions the value M* calculated
by the function pad equally into k-n bits sequentially from the
top, and outputs values M[1] ..., M[L].

FIG. 4 is a configuration diagram of a hash value calcula-
tion device 10 according to Embodiment 1.

The hash value calculation device 10 implements the hash
function described above.

The hash value calculation device 10 includes an arbitrary-
length value input part 11, a padding part 12, a partitioning
part 13, a default-length value input part 14, a compression
function calculation part 15, and a hash value calculation part
16.

US 9,419,791 B2

5

The arbitrary-length value input part 11, the padding part
12, and the partitioning part 13 calculate the input part of the
hash function. The default-length value input part 14, the
compression function calculation part 15, and the hash value
calculation part 16 calculate the arithmetic operation part of
the hash function.

The arbitrary-length value input part 11 receives, with an
input device, the arbitrary-length value M.

The padding part 12, upon input of the value M received by
the arbitrary-length value input part 11, calculates the func-
tion pad with a processing device, and outputs the value M*.

The partitioning part 13, upon input of the value M*, cal-
culates the partition function d with the processing device,
and outputs the values M[1] . .., M[L].

With the input device, the default-length value input part 14
receives the values M[1] . . ., M[L] outputted by the parti-
tioning part 13.

The compression function calculation part 15, upon input
of the values M[1] . . ., M|[L] received by the default-length
value input part 14, calculates the compression function
c[1], ..., c[L] with the processing device, and outputs the
values y1[L.] and y2[L]. The compression function calcula-
tion part 15 includes a function f calculation part 151 and an
encryption function calculation part 152. The function f cal-
culation part 151 calculates functions {[1], . . . , f]L] that
constitute the compression function, with the processing
device. The encryption function calculation part 152 calcu-
lates encryption functions el[1], . . . , el[L] and encryption
functions e2[1], . . ., e2[L] that constitute the compression
function, with the processing device.

The hash value calculation part 16, upon input of the values
y1[L] and y2[L] outputted by the compression function cal-
culation part 15, calculates the function g with the processing
device, and outputs the hash value h to an output device.

FIG. 5 is a flowchart showing the operation of the hash
value calculation device 10 according to Embodiment 1.

(S1: Arbitrary-Length Value Input Step)

The arbitrary-length value input part 11 receives the value
M having an arbitrary bit length.

(S2: Padding Step)

The padding part 12, upon input of the value M received in
(S1), calculates the function pad, and outputs the value M*
having (k-n)xL bits.

(S3: Partition Step)

The partitioning part 13, upon input of the value M* out-
putted in (S2), calculates the partition function d with the
processing device, and outputs values M[1], . . ., M[L] each
having (k-n) bits.

(S4: Default-Length Value Input Step)

The default-length value input part 14 receives, with the
input device, the values M[1], .. . , M[L] outputted in (S3).

(S5: Compression Function Calculation Step)

The function calculation step includes four steps of (S51)
to S(54).

(S51: Function f Calculation Step (1))

The function f calculation part 151, upon input of the three
values including the value M[1], the fixed value IV1, and the
fixed value IV2, calculates the function f]1], and outputs four
values x1[1], x2[1], k1[1], and k2[1].

(S52: Encryption Function Calculation Step (1))

The encryption function calculation part 152, for the value
x1[1] as a plaintext and the value k1[1] as a key, calculates the
encryption function el[1], and outputs the value y1[1]. Also,
the encryption function calculation part 152, for the value
x2[1] as a plaintext and the value k2[1] as a key, calculates the
function encryption e2[1], and outputs the value y2[1].

15

35

40

45

50

55

60

6
Subsequently, the processes of (S53) to (S54) are executed
for each integer i of i=2, . . ., L in an ascending order.

(S53: Function f Calculation Step (2))

The function f calculation part 151, upon input of three
values M[i], y1[i-1], and y2[i-1], calculates the function]i],
and outputs four values including the values x1[i], x2[i],
k1[i], and k2[i/.

(S54: Encryption Function Calculation Step (2))

The encryption function calculation part 152, for the value
x1[7] as a plaintext and the value k1[/] as a key, calculates the
encryption function el[/], and outputs the value y1[i]. Also,
the encryption function calculation part 152, for the value
x2[i] as a plaintext and the value k2[/] as a key, calculates the
encryption function e2[i], and outputs the value y2[i/.

(S6: Hash Value Calculation Step)

The hash value calculation part 16, upon input of the values
y1[L] and y2[L] outputted in (S5), calculates the function g,
and outputs the hash value h.

As described above, the hash value calculation device 10
according to Embodiment 1 constitutes a hash function with-
out using the feed-forward arithmetic operation. This can
reduce the memory usage.

Also, the hash value calculation device 10 according to
Embodiment 1 treats the plaintext component of the block
cipher encryption function, as the ciphertext component of
the preceding encryption function. A hash function satisfying
the collision resistance can be implemented for cases where
the block cipher encryption function is an idealized block
cipher.

In the case of AES-256, usually, the plaintext length is 128
bits. The length of 128 bits is short for ahash value length. The
collision resistance of a hash function having an output length
of 128 bits requires a calculation amount corresponding to 254
times of hash value calculation by brute force attack. This
falls within a range where calculation by a computer is pos-
sible. Hence, in the hash function according to Embodiment
1, one compression function uses a block cipher encryption
function twice, so that the output has a 256-bit length, which
is twice the plaintext length. Such a hash function whose
output length is twice the plaintext length of the encryption
function is called double-block-length hash function.

Embodiment 2

Embodiment 1 explained the hash function in which the
compression function is constituted using the functions
f[1],...,f[L] that satisty three conditions. Embodiment 2 will
explain a hash function in which functions f[1], . . ., f{L] are
more specified.

Embodiment 2 is the same as Embodiment 1 except for a
function f.

FIG. 6 a structural diagram of a compression function ¢
utilized in the hash function according to Embodiment 2.

The compression function c¢ is constituted using a function
f, and two encryption functions el and e2 for a block cipher
having an n-bit plaintext length and a k-bit key length. The
encryption functions el and e2 are the same as the encryption
functions el and e2 according to Embodiment 1.

The function f, upon input of three values M, w1, and w2,
outputs four values x1, x2, k1, and k2. The value M has k-n
bits. The values w1 and w2 each have n bits. The values x1 and
x2 each have n bits. The values k1 and k2 each have k bits.

The function f makes the value w1 into the value x1, makes
the value w1 into the value x2 through conversion with a
substitute function p, and makes the value M and value w2 in
combination into the values k1 and k2.

US 9,419,791 B2

7

The function f may arrange the bits of the value M and the
bits of the value w2 in arbitrary orders, thus forming the
values k1 and k2. For example, the function f adds the bits of
the value w2 after the bits of the value M, thus forming the
values k1 and k2.

The substitute function p is an n-bit substitute function, and
is a function in which p(x)=x holds for an arbitrary n-bit value
x. For example, the substitute function p is a function that
calculates the exclusive disjunction of an n-bit input value x
and an n-bit fixed value ¢, or a function that adds an n-bit fixed
value cto an n-bit input value x, and outputs a least significant
n-bit value.

FIG. 7 is a structural diagram of the arithmetic operation of
the hash function according to Embodiment 2.

Inatop compression function ¢[1], first, upon input of three
values including a value M[1], a fixed value IV1, and a fixed
value IV2, a function {[1] outputs four values x1[1], x2[1],
k1[1], and k2[1]. In the function]1], the fixed value IV1 is
made into the value x1[1]. The fixed value IV1 is made into
the value x2[1] through conversion with the substitute func-
tion p. The value M[1] and the fixed value IV2 in combination
are made into the values k1[1] and k2[1]. Subsequently, for
the value x1[1] as a plaintext and the value k1[1] as a key, the
encryption function e1[1] outputs the value y1[1]. Also, for
the value x2[1] as a plaintext and the value k2[1] as a key, the
encryption function e2[1] outputs the value y2[1].

Ina compression function c[i] foreachiofi=2, ..., L, first,
upon input of three values M[i], y1[i-1], and y2[i-1], a func-
tion {]i] outputs four values x1[7], x2[7], k1[7], and k2[/]. In the
function {]i], a value y1[i-1] is made into a value x1[7]. The
value y1[i-1] is made into a value x2[/] through conversion
with the substitute function p. A value MJ[i] and a value
y2[i-1] in combination are made into values k1[i] and k2[/].
Subsequently, for the value x1[7] as a plaintext and the value
kl1[i] as a key, an encryption function el[/] outputs a value
y1[i]. Also, for the value x2[i] as a plaintext and the value
k2[i] as a key, an encryption function e2[i] outputs a value
v2[i].

Embodiment 3

Embodiment 3, as with Embodiment 2, will explain a hash
function in which functions f]1], . . ., f{L.] are more specified.

Embodiment 3 is the same as Embodiment 1 except for a
function f.

FIG. 8 is a structural diagram of a compression function ¢
utilized in the hash function according to Embodiment 3.

The compression function ¢ is constituted using a function
f, and two encryption functions el and e2 for a block cipher
having an n-bit plaintext length and a k-bit key length. The
encryption functions el and e2 are the same as the encryption
functions el and e2 according to Embodiment 1.

The function f, upon input of three values M, w1, and w2,
outputs four values x1, x2, k1, and k2. The value M has k-n
bits. The values w1 and w2 each have n bits. The values x1 and
x2 each have n bits. The values k1 and k2 each have k bits.

The function f makes the value w1 into the value x1, makes
the value w2 into the value x2 through inversion of the respec-
tive bits, makes the value M and value w2 in combination into
the value k1 and makes the value M and value w1 in combi-
nation into the value k2.

The function f may arrange the bits of the value M and the
bits of the value w2 in an arbitrary order, thus forming the
value k1, and may arrange the bits of the value M and the bits
of the value w1 in an arbitrary order, thus forming the value
k2. For example, the function f adds the bits of the value M

10

15

20

25

30

35

40

45

50

55

60

65

8

after the bits of the value w2, thus forming the value k1, and
adds the bits of the value w1 after the bits of the value M, thus
forming the value k2.

FIG. 9 is a structural diagram of the arithmetic operation
part of the hash function according to Embodiment 3.

Inatop compression function c[1], first, upon input of three
values including a value M[1], a fixed value IV1, and a fixed
value IV2, a function {[1] outputs four values x1[1], x2[1],
k1[1], and k2[1]. In the function f]1], the fixed value IV1 is
made into the value x1[1]. The fixed value IV2 is made into
the value x2[1] through inversion of the respective bits. The
value M[1] and the fixed value IV2 in combination are made
into a value k1[1]. The value M[1] and the fixed value IV1 in
combination are made into a value k2[1]. Subsequently, for
the value x1[1] as a plaintext and the value k1[1] as a key, the
encryption function el[1] outputs a value y1[1]. Also, for the
value x2[1] as a plaintext and the value k2[1] as a key, the
encryption function e2[1] outputs a value y2[1].

Ina compression function c[i] foreachiofi=2, ..., L, first,
upon input of three values M[i], y1[i-1], and y2[i-1], a func-
tion 1]i] outputs four values x1[7], x2[/], k1[/], and k2[i]. In a
function {]i], a value y1[i-1] is made into a value x1[7]. The
value y2[i-1] is made into a value x2[/] through inversion of
the respective bits. The value M[i] and the value y2[i-1] in
combination are made into the value k1[{]. The value M[i] and
the value y1[i-1] in combination are made into the value
k2[i]. Subsequently, for the value x1[/] as a plaintext and the
value k1[/] as a key, an encryption function el[i] outputs a
value y1[i]. Also, for the value x2[/] as a plaintext and the
value k2[/] as a key, an encryption function e2[i] outputs a
value y2[i/.

Embodiment 4

Embodiment 4, as with Embodiments 2 and 3, will explain
a hash function in which functions f[1], . . ., f[L] are more
specified.

Embodiment 4 is the same as Embodiment 1 except for a
function £.

FIG. 10 1s a structural diagram of a compression function ¢
utilized in the hash function according to Embodiment 4.

A compression function ¢ is constituted using a function f,
and two encryption functions el and e2 for a block cipher
having an n-bit plaintext length and a k-bit key length. The
encryption functions el and e2 are the same as the encryption
functions el and e2 according to Embodiment 1.

The function f, upon input of three values M, w1, and w2,
outputs four values x1, x2, k1, and k2. The value M has k-n
bits. The values w1 and w2 each have n bits. The values x1 and
x2 each have n bits. The values k1 and k2 each have k bits.

The function f makes the value w1 into the value x1, makes
the value w2 into the value x2, and makes the value M and
value w2 in combination into the value k1. The function f
makes the value M and a value, which is outputted by an
encryption function e3 for the value x1 as a plaintext and the
value k1 as a key, in combination into the value k2.

The function f may arrange the bits of the value M and the
bits of the value w2 in an arbitrary order, thus forming the
value k1, and may arrange the bits of the value M and the bits
of the value outputted by the encryption function e3 in an
arbitrary order, thus forming the value k2. For example, the
function f adds the bits of the value M after the bits of the
value w2, thus forming the value k1, and adds the bits of the
value outputted by the encryption function e3 after the bits of
the value M, thus forming the value k2.

The encryption function e3 employed in the function fis a
block cipher encryption function which, for an n-bit value as

US 9,419,791 B2

9

a plaintext and a k-bit value as a key, outputs an n-bit value.
The encryption function e3 can be the same as the encryption
function el.

FIG. 11 is a structural diagram of the compression function
¢ according to Embodiment 4 for cases where the encryption
function el and the encryption function e3 are the same. In
FIG. 11, the encryption functions el and e3 as a whole are
treated as the encryption function el.

FIG. 12 is a structural diagram of the arithmetic operation
part of a hash function according to Embodiment 4. In FIG.
12, the arithmetic operation part of the hash function is con-
stituted using a compression function ¢ for cases where the
encryption function el and the encryption function e3 are the
same.

Inatop compression function ¢[1], first, upon input of three
values including a value M[1], a fixed value IV1, and a fixed
value IV2, a function {[1] outputs four values x1[1], x2[1],
k1[1], and k2[1]. In the function]1], the fixed value IV1 is
made into the value x1[1]. The fixed value IV2 is made into
the value x2[1]. The value M[1] and the fixed value IV2 in
combination are made into a value k1[1]. For the value x1[1]
as a plaintext and the value k1[1] as a key, the encryption
function e[1] calculates a value y1[1] which, in combination
with the value M[1], is made into the value k2[1]. Subse-
quently, for the value x2[1] as a plaintext and the value k2[1]
as a key, the encryption function e2[1] outputs a value y2[1].

Ina compression function c[i] foreachiofi=2, ..., L, first,
upon input of three values M[i], y1[i-1], and y2[i-1], a func-
tion {]i] outputs four values x1[7], x2[7], k1[7], and k2[/]. In the
function {[i], the value y1[i-1] is made into the value x1[].
The value y2[i-1] is made into the value x2[]. The value M[i]
and the value y2[i-1] in combination are made into the value
k1[i]. For the value x1[/] as a plaintext and the value k1[/] as
a key, an encryption function el[7] calculates a value y1[i]
which, in combination with the value M[i], is made into the
value k2[7]. Subsequently, for the value x2[i] as a plaintext
and the value k2[i] as a key, an encryption function e2[i]
outputs a value y2[i/.

The hash value calculation device 10 described above is
constituted by, for example, circuits and software. In cases
where the hash value calculation device 10 is constituted by
circuits, the processing device in the above description is, for
example, an arithmetic operation circuit, and the memory is,
for example, a register. In cases where the hash value calcu-
lation device 10 is constituted by software, the processing
device in the above description is, for example, a CPU (Cen-
tral Processing Unit), and a memory is, for example, a RAM
(Random Access Memory). The input device in the above
description is, for example, a keyboard or communication
board, and the output device is, for example, a display device
such as an LCD (Liquid Crystal Display), a communication
board, or a memory such as a register or a RAM. The con-
figuration of the hash value calculation device 10 is not lim-
ited to these examples, as a matter of course.

In cases where the hash value calculation device 10 is
constituted by circuits, the “part” described above may be
replaced by a “circuit”. Alternatively, the “part” may be
replaced by a “process”, “device”, “apparatus”, “means”,
“procedure”, or “function”. Namely, the “part” may be imple-
mented as firmware stored in a ROM (Read Only Memory).
Alternatively, the “part” may be implemented by only soft-
ware; by only hardware such as an element, a device, a sub-
strate, or a wiring line; by a combination of software and
hardware; or furthermore by a combination of software, hard-
ware, and firmware.

REFERENCE SIGNS LIST

10: hash value calculation device; 11: arbitrary-length
value input part; 12: padding part; 13: partitioning part; 14:

15

20

25

35

40

45

55

60

10

default-length value input part; 15: compression function cal-
culation part; 151: function f calculation part; 152: encryption
function calculation part; 16: hash value calculation part

The invention claimed is:

1. A hash value calculation device that calculates a hash
value using an encryption function for a block cipher having
an n-bit plaintext length and a k-bit (k>n) key length, the hash
value calculation device comprising:

a default-length value input part, implemented by circuitry,
that receives L. (L is an integer of 2 or more) of values
M[1], ..., M[L] each having k-n bits;

a compression function calculation part, implemented by
the circuitry, that, for each integer i of i=1, ..., L in an
ascending order: calculates a function {]i] which, upon
input of a value M[i] received by the default-length value
input part, an n-bit value y1[i-1](a value y1[0] is a
predetermined value IV1), and an n-bit value y2[i-1](a
value y2[0] is a predetermined value 1V2), outputs an
n-bit value x1[i], an n-bit value x2[/], a k-bit value k1[{],
and a k-bit value k2[{]; for the value x1[/] as a plaintext
and the value kl1[i] as a key, calculates an n-bit value
y1[i] with the encryption function; and for the value
x2[i] as a plaintext and the value k2[#] as a key, calculates
an n-bit value y2[i] with the encryption function; and

ahash value calculation part, implemented by the circuitry,
that, upon input of a value y1[L] and a value y2[L] which
are calculated by the compression function calculation
part, calculates a hash value with an injective function g.

2. The hash value calculation device according to claim 1,

wherein, for each integer i=1, . . ., L, the function {]i] is
injective, and where the value M[i] is a fixed value, an
injective relation holds between the value x1[/], the
value x2[7] and the value y1[i], the value y2[i], and the
value x1[7] and the value x2[/] are not equal, or the value
k1[i] and the value k2[/] are not equal.

3. The hash value calculation device according to claim 1,

wherein, for each integer i of i=1, . . ., L, the function {]i]
is a function that makes the value y1[i-1] into the value
x1[i], makes the value yl[i-1] into the value x2[i]
through conversion with a substitute function p, and
makes the value y2[i-1] and the value M[i] in combina-
tion into the value k1[i] and the value k2[i/.

4. The hash value calculation device according to claim 1,

wherein, for each integer i of i=1, . . ., L, the function {]i]
is a function that makes the value y1[i-1] into the value
x1[i], makes the value y2[i-1] into the value x2[i]
through inversion of respective bits, makes the value
M[i] and the value y2[i-1] in combination into the value
k1[i], and makes the value M[i] and the value y1[i-1] in
combination into the value k2[i/.

5. The hash value calculation device according to claim 1,

wherein, for each integer i of i=1, . . ., L, the function {]i]
is a function that makes the value y1[i-1] into the value
x1[i], makes the value y2[i-1] into the value x2[i],
makes the value M[i] and the value y2[i-1] in combina-
tion into the value k1[/], and makes a value made from
the value y1[i] and the value M[i] in combination into the
value k2[i], the value y1[i] being calculated by the
encryption function upon input of the value x1[] and the
value k1[i/.

6. The hash value calculation according to claim 1, further

comprising:

an arbitrary-length value input part, implemented by the
circuitry, that receives a value M having an arbitrary bit
length;

a padding part, implemented by the circuitry, that adds a
predetermined value to the value M received by the

US 9,419,791 B2

11

arbitrary-length value input part and outputs a value M*
having a bit length that is L times as large as (k-n) bits;
and

a partitioning part, implemented by the circuitry, that par-
titions the value M* generated by the padding part into L.
and outputs values M[1], .. ., M[L] each having k-n bits,

wherein the default-length value input part receives the
values M[1], . . ., M[L] outputted by the partitioning
part.

7. A hash value calculation method of calculating a hash
value using an encryption function for a block cipher having
an n-bit plaintext length and a k-bit (k>n) key length, the
method comprising:

a default-length value input step of, with an input device,
receiving L. (L is an integer of 2 or more) of values
M[1], ..., M[L] each having k-n bits;

acompression function calculation step of, with a process-
ing device, for each integer i of i=1, . . . , L in an
ascending order: calculating a function 1]i] which, upon
input of a value M[i] received in the default-length value
input step, an n-bit value y1[i-1](a value y1[0] is a
predetermined value IV1), and an n-bit value y2[i-1](a
value y2[0] is a predetermined value 1V2), outputs an
n-bit value x1[{], an n-bit value x2[/], a k-bit value k1[/],
and a k-bit value k2[i]; for the value x1[/] as a plaintext
and the value k1[] as a key, calculating an n-bit value
y1[i] with the encryption function; and for the value
x2[i] as a plaintext and the value k2[i] as a key, calcu-
lating an n-bit value y2[i/] with the encryption
function; and

10

20

25

12

ahash value calculation step of, with the processing device,
upon input of a value y1[L] and a value y2[L] which are
calculated by the compression function calculation step,
calculating a hash value with an injective function g.
8. A non-transitory computer-readable storage medium
including computer executable instructions, wherein the
instructions, when executed by a computer, cause the com-
puter to perform a method of calculating a hash value using an
encryption function for a block cipher having an n-bit plain-
text length and a k-bit (k>n) key length, the method compris-
ing:
receiving L (L is an integer of 2 or more) of values
M[1], ..., M[L] each having k-n bits;

calculating a function f[i] which, for input of a value M[i]
received by the receiving, an n-bit value y1[i-1](a value
y1[0] is a predetermined value IV1), and an n-bit value
y2[i-1](a value y2[0] is a predetermined value [V2) for
eachintegeriofi=l,...,inanascending order, outputs
an n-bit value x1[{], an n-bit value x2[], a k-bit value
k1[i], and a k-bit value k2[i]; for the value x1[i] as a
plaintext and the value k1[/] as a key, calculating an n-bit
value y1[i] with the encryption function; and for the
value x2[/] as a plaintext and the value k2[/] as a key,
calculating an n-bit value y2[/] by the encryption func-
tion; and

upon input of a value y1[L] and a value y2[L] which are

calculated by the calculating, calculating a hash value
through an injective function g.

#* #* #* #* #*

